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TECHNIQUES FOR IMPROVING Tm OPENING OF THE MAIN 

DIAPHRAGM I N  A LARGE COMBUSTION DRIVER 

By Robert E. Dannenberg and David A. Stewart 
Ames Research Center 

Refinements i n  operating techniques t o  improve the  piercing process and 
' the lobe formation of t h e  main diaphragm i n  a large combustion dr iver  a r e  
described. Problems associated with time var ia t ions  i n  the  dr iver  combustion 
process as they a f f e c t  t h e  form of the  diaphragm peta l l ing  are discussed. 
The use of a Pierce Analog System (PAS) t o  actuate  the  diaphragm punch i s  
shown t o  be b e n e f i c i a l  from t h e  standpoint of (1) diaphragm lobe shaping, (2)  
f u l l  u t i l i z a t i o n  of t h e  combustion energy, and (3) reduction i n  the  s c a t t e r  
i n  the  run-to-run primary shock veloci ty .  Consistent opening of a diaphragm 
i n t o  four  triangular-shaped lobes i s  shown t o  be a t ta ined  with t h e  use of a 
properly designed piercing head. 

INTRODUCTION 

The Ames 1-foot shock tunnel i s  a combustion-driven gasdynamic t e s t i n g  
f a c i l i t y  which operates at Mach numbers from 10 t o  15 with a i r ,  C O 2 ,  and 
other gas mixtures. The operating pr inc ip le  of t h e  f a c i l i t y  i s  described i n  
references 1 and 2. I ts  bas ic  components include a large combustion o r  
dr iver  chamber (24-ft  by 27-in. I . D . ) ,  a driven o r  shock-tube sec t ion  (40-ft  
by 6.2-in. I . D . ) ,  a conical  nozzle, a t e s t  sect ion 1-foot square, and a 
vacuum chamber. A rupturable diaphragm separates the  dr iver-  and driven-tube 
sections as shown i n  f igure  1. The diaphragm i s  opened by means of a squib- 
powered piercing mechanism. 

The 100-cu f t  dr iver  with t h r o t t l e  p l a t e s  a t  the  entrance t o  the  driven 
tube (and the  large driver-driven tube area r a t i o )  i s  designed t o  give a 
par t icu lar  ta i lored- in te r face  mode of operation. A reservoir  enthalpy of 
about 5000 Btu per pound i s  produced with a i r  as t h e  driven gas. To obtain 
t h i s  reservoir  enthalpy, t h e  helium driver  gas i s  heated by t h e  combustion 
of oxygen and hydrogen t o  a temperature of b o o o  F and t o  a pressure of 
about 5200 p s i a  from an i n i t i a l  pressure of 750 psia .  The use of t h e  la rge  
combustion chamber created c e r t a i n  unique problems. One problem arose 
because although t h e  combustion process i s  general ly  consistent and the  peak 
pressures a r e  reproducible, t h e  t i m e  from i g n i t i o n  t o  t h e  peak value v a r i e s  
considerably from run t o  run. It i s  e s s e n t i a l  f o r  e f f i c i e n t  and safe  opera- 
t i o n  t o  contain t h e  gases i n  t h e  chamber u n t i l  the  mixture can burn 
completely . 



This paper discusses some of t h e  problems associated w i t h  time var ia t ions  
i n  t h e  driver-combustion process as they  a f f e c t  both diaphragm p e t a l l i n g  and 
t h e  primary-shock s t rength i n  the  driven tube. Techniques a r e  described which 
provide consistent diaphragm peta l l ing  and permit timed piercing t o  occur con- 
cur ren t ly  with t h e  attainment of peak pressure i n  t h e  dr iver  chamber 
(completion of combustion). 

DIAPHRAGM DESIGN 

Hemispherical diaphragms only have been used between t h e  dr iver-  and 
driven-tube sect ions i n  t h e  arrangement shown i n  f i g u r e  1. The dome shape of 
t h e  diaphragm w a s  determined i n i t i a l l y  by nonrupture t e s t s  i n  which the dr iver  
w a s  operated as a constant-volume combustion chamber. The diaphragms a r e  
cold d ie  formed. They a r e  shaped and s t ressed  s o  t h a t  they do not bulge from 
t h e i r  shape during normal combustion i n  t h e  dr iver .  This i s  an e s s e n t i a l  
point since it permits t h e  spacing between t h e  pierce t i p  and t h e  inner sur- 
face of the  apex of t h e  dome portion t o  be preset  accurately.  If the  spacing 
i s  too  close, t h e  pierce cannot penetrate  t h e  diaphragm; i f  it i s  t o o  grea t ,  
the  pierce a t t a i n s  such a high momentum t h a t  it damages the  mechanism at  the 
end of i t s  stroke. Downstream of the  diaphragm, a sect ion of t h e  driven tube 
has been cut out t o  provide space f o r  t h e  lobes t o  f o l d  i n t o  when the  
diaphragm opens. 

The choice of mater ia l  from which t h e  diaphragm i s  fabricated w a s  found 
t o  be important. I n i t i a l l y ,  warehouse stocks of c l a s s  18-8 s t a i n l e s s  s t e e l s  
were used. Through t r i a l  and er ror ,  it w a s  found t h a t  a p a r t i c u l a r  s t e e l  of 
t h i s  c lass ,  a Jones and Laughlin type 321 s t a i n l e s s  with a D f i n i s h ,  produced 
t h e  most consistent lobe formation without fragmenting. It has a t e n s i l e  
s t rength of 86,000 ps i ,  a y ie ld  s t rength of 39,600 ps i ,  and elongation of 
52 percent and can be bent 180° i n  a radius equal t o  t h e  sheet thickness. 
The thickness a t  t h e  apex of the  dome of a diaphragm formed from a O.125-in.- 
th ick  sheet i s  reduced i n  the  drawing process t o  0.100 50.002 in .  The thick- 
ness d is t r ibu t ions  along four  mutually perpendicular rays a re  measured and 
a l l  un i t s  f a l l i n g  outside c e r t a i n  tolerance limits a r e  discarded. This pro- 
cedure provides some assurance t h a t  upon rupturing, the  diaphragm t e a r s  
uniformly. A crimp r i n g  i n  t h e  flange both posi t ions and helps hold t h e  
diaphragm i n  place between the clamping r ings.  

DIAPHRAGM PETALLING 

A mechanical piercing system, with a four-sided punch head driven by an 
explosive car t r idge,  i s  used t o  i n i t i a t e  diaphragm opening, To eliminate the  
chance of t h e  diaphragm's opening before t h e  combustion process w a s  completed, 
the pierce system w a s  o r i g i n a l l y  programmed t o  pierce a t  a f ixed  time a f t e r  
the i n i t i a t i o n  of combustion. The time selected w a s  t h a t  which corresponded 
t o  the  longest time necessary t o  allow the  gas mixture t o  burn completely. 
Operating experience showed t h i s  time t o  be 710 msec. A t  t h e  preset  time, 
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the  punch head pierces  t h e  diaphragm and forms a four-sided hole. The hot,  
high-pressure gases i n  the dr iver  then cause the  diaphragm t o  t e a r ,  forming 
p e t a l s  o r  lobes which f o l d  back against  t h e  s ides  of the  driven tube. Photo- 
graphs of t y p i c a l  lobe openings a r e  shown i n  f igures  2 and 3. 

While f our-lobe openings a r e  desired,  operating experience showed t h a t  
i n  some instances the diaphragm, although pierced with a four-sided punch, 
opened i n t o  three lobes as shown i n  f igure  2 ( c ) .  With a three-lobe opening, 
t h e  t e a r  l i n e  between adjacent lobes has a tendency t o  c u r l  r a t h e r  than t o  
terminate i n  a sharp notch (compare f i g s .  2 (a)  and 2(c)  ) . This c u r l  has the  
e f f e c t  of l i f t i n g  a port ion of t h e  opened lobe off the  w a l l  and i n t o  the  hot 
gas stream. When t h i s  occurs, the  lobe i s  heated and becomes weakened. If 
the  ac t ion  of the  gases causes t h e  piece of lobe t o  break of f ,  it i s  picked 
up and accelerated by t h e  high ve loc i ty  of t h e  stream and can be damaging t o  
tunnel  components. 

S t a t i s t i c a l l y  it w a s  noted t h a t  the loss  of portions of diaphragm lobes 
The (from a three-lobe opening) w a s  associated with rapid combustion times. 

time required f o r  the pressure i n  t h e  combustion chamber t o  r i s e  from i t s  
i n i t i a l  value t o  the m a x i m u m  var ies  considerably from run t o  run. With 
normal, smooth combustion, t h e  time required can be as short  as 400 msec or 
as long as TOO msec. The var ia t ion  i n  the  pressure-time h i s t o r i e s  of t h e  
dr iver  chamber t h a t  occurs f o r  normal combustion i s  shown i n  f igure  4. The 
causes of these differences i n  the  time t o  reach peak pressure a r e  d i f f i c u l t  
t o  del ineate  and are  probably associated with minute changes i n  the combustion 
environment. 
(point  a, f i g .  k ) ,  the  gas pressure i n  the dr iver  w a s  reduced as the gas 
cooled. 
diaphragm opening corresponding t o  point b 
l O , O 5 O  f p s  f o r  point c.  

With the "fixed-time" pierce and with an e a r l y  pressure peak 

Consequently, t h e  measured shock ve loc i ty  i n  t h e  driven tube with 
w a s  9,600 f p s  as compared t o  

It w a s  noticed t h a t  when t h e  combustion pressure peaked a t  about 650 t o  
TOO msec, the diaphragm generally lobed evenly with no tendency f o r  a lobe t o  
f o l d  over (see f i g .  2 ( c ) ) .  If the  combustion pressure peaked e a r l y  a t  about 
400 msec, the  diaphragms general ly  l o s t  portions of t h e i r  lobes ( f i g .  3 ( c ) ) .  
Examination of t h e  records of 59 consecutive diaphragm openings indicates  the 
following breakdown between four- and three-lobe types (driver-driven condi- 
t ions  remained unchanged) : 

f our-lobe 
f our-lobe 

three  - lob e 
three-lobe 
three  - lob e 
th ree  - lobe 

s imilar  f i g .  2 ( a ) )  42 percent 
s imilar  f i g .  2 ( b ) )  6 percent 
s imilar  f i g .  2 ( c ) )  11 percent 
similar f i g .  3 ( a ) )  23 percent 
s i m i l a r  f i g .  3 ( b ) )  6 percent 
s imilar  f i g .  3 ( c ) )  12 percent 

There w a s  no instance i n  which a p e t a l  of a four-lobe opening showed a 
tendency t o  f o l d  over. 

It i s  believed t h a t  two f a c t o r s  contr ibute  t o  the  poor diaphragm opera- 
t i o n  noted with a three-lobe opening and an e a r l y  peak combustion cycle ( f o r  
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a f ixed  pierce t ime) .  
pressure and pierce,  the diaphragm absorbs a grea te r  amount of heat with an 
attendant loss  i n  i t s  mechanical s t rength propert ies .  Second, t h e  large lobe 
base (comparedto a 4-petal lobe) tends t o  pos i t ion  t h e  e f fec t ive  n e u t r a l  axis 
of the  individual  lobe wel l  away from the  plane of t h e  metal. This causes a 
grea te r  deformation a t  the  base of a lobe and induces a crack t o  propagate 
normal t o  t h e  main par t ing  l i n e  t o  r e l i e v e  t h e  stress d i s t r i b u t i o n  along t h e  
circumference of the  lobe. 

F i r s t ,  with t h e  longer time i n t e r v a l  between peak 

(Compare f i g .  2 (a)  with f i g s .  2 ( c )  and 3 . )  

It w a s  apparent t h a t  b e t t e r  control  of t h e  pierce time r e l a t i v e  t o  t h e  
peak combustion pressure would be required i f  consis tent  diaphragm p e t a l l i n g  
were t o  be achieved. 

PIERCE ANALOG SYSTEM 

To compensate f o r  the  var ia t ion  i n  the  pressure r i s e  time of t h e  combus- 
t i o n  process i n  t h e  dr iver ,  a Pierce Analog System (PAS) w a s  i n s t a l l e d  i n  t h e  
f a c i l i t y .  The PAS w a s  designed t o  d i f f e r e n t i a t e  a pressure s igna l  from t h e  
dr iver  with respect t o  time and, a t  t h e  time t h e  der ivat ive becomes zero ( a t  
peak pressure),  i n i t i a t e  piercing of t h e  diaphragm. 
place of t h e  o r i g i n a l  pierce timing control  which w a s  based on a f ixed  time 
in te rva l .  A block diagram of the  PAS i s  shown i n  f igure  5.  There a r e  three  
input s ignals :  an analog s igna l  from a pressure transducer located i n  a port 
i n  t h e  combustion chamber, a pulse s igna l  from a pressure switch ( located i n  
the same p o r t ) ,  and a pulse s igna l  f r o m t h e  discharge of t h e  capacitor bank 
network ( t o  the  i g n i t i o n  wires within t h e  combustion chamber). 
the time from peak pressure i n  the  combustion chamber t o  pierce can be pro- 
grammed. Typical pierce times used with t h e  PAS a r e  indicated by t h e  s o l i d  
symbols on t h e  curves of f igure  4. 

This system takes the  

With t h e  PAS, 

The operation of the  PAS i s  as follows: The system i s  s t a r t e d  i n t o  
operation f o r  a GO s i t u a t i o n  by a pulse s igna l  from the discharge of t h e  
capacitance network i n t o  the wire i g n i t i o n  system ( i n i t i a t i o n  of combustion). 
The timer t l  ( f i g .  5 )  switches Gate No .  1 i n t o  t h e  pressure transducer s igna l  
c i r c u i t .  The pressure switch s igna l  opens Gate No .  2. A s  the  r a t e  of change 
from t h e  pressure transducer s igna l  passes through zero, a pulse (Schmitt 
t r i g g e r )  i s  produced t h a t  t r iggers  the thyratron tube c i r c u i t .  The thyratron 
pulse i s  sent t o  the pierce c i r c u i t  and through a time-delay c i r c u i t  t o  the  
nozzle closing mechanism. While it i s  not per t inent  t o  t h e  diaphragm opera- 
t ion ,  t h e  requirement f o r  a nozzle closing device influenced t h e  design of 
the PAS and w i l l  be discussed l a t e r .  Certain protect ive or NO-GO arrangements 
were a l s o  incorporated i n  the  design as follows: If the  pressure transducer 
s igna l  reaches 3800 p s i  before time 
t o  Gate No. 3 t o  t r i g g e r  a thyratron pulse t o  t h e  nozzle valve system. Also, 
i f  the  pressure transducer s igna l  does not reach 3800 p s i  before time 
thyratron pulse t r iggered  from time-delay uni t  t2 i s  sent  t o  the  nozzle 
valve system. Both act ions w i l l  abort the shot and immediately close t h e  
nozzle valve, t o  protect  the  tunnel  s t ruc ture  downstream of t h e  nozzle and t h e  
models i n  t h e  t e s t  section, i n  case of a detonation or a very slow combustion. 

tL, the  pressure switch s igna l  i s  sent 

t z ,  a 
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I n  e i t h e r  case, t h e  i n i t i a l  shock-wave ve loc i ty  within t h e  driven tube would 
not be t h a t  required t o  e s t a b l i s h  the  t a i l o r e d  in te r face  condition i n  t h e  
t e s t  -gas reser'voir. 

A t o t a l  of 41 diaphragm openings w e r e  made w i t h  the  PAS i n  operation. 
The lobe formations were as follows (driver-driven conditions and punch shape 
remained unchanged). 

f our-lobe (similar f i g .  2( a) ) 
four-lobe ( s imi la r  f i g .  2 ( b ) )  

three-lobe ( s imi la r  f i g .  2 ( c ) )  
three-lobe ( s imi la r  f i g .  3 (a ) )  
three-lobe ( s imi la r  f i g .  3 ( b ) )  
three-lobe ( s imi la r  f i g .  3( e) ) 

34 percent 
2 percent 

39 percent 
18 percent 

5 percent 
2 percent 

A comparison of t h i s  and t h e  preceding tabula t ion  shows t h a t  t h e  PAS improved 
t h e  number of s a t i s f a c t o r y  diaphragm openings ( t y p i f i e d  by f i g .  2) from 59 t o  
75 percent. 

I n  addi t ion t o  improving diaphragm peta l l ing ,  t h e  PAS serves another 
equally important function. 
combustion chamber pressure and temperature. 
pierce following point 
compared t o  9,600 f p s  f o r  point 
mary shock veloci ty ,  i n  the  driven tube, from about 7 percent t o  1.5 percent 
a t  a nominal ve loc i ty  of 10,100 fps .  I n  turn,  t h i s  has improved t h e  run-to- 
run r e p e a t a b i l i t y  of conditions i n  t h e  tes t -gas  reservoir .  

It assures t h a t  t h e  diaphragm opens near m a x i m  
For the  curve i n  f igure  4, w i t h  

The PAS has reduced s c a t t e r  i n  the  p r i -  
a, the  measured shock ve loc i ty  w a s  10,200 f p s  (as 

b ) .  

CONCAVE-SUiTACE PUNCH 

With t h e  Pierce Analog System i n  operation, t h e  number of three-lobe 
diaphragm openings w a s  s t i l l  t o o  large t o  be considered sa t i s fac tory .  
s iderable  thought w a s  given t o  t h e  remaining var iables  t h a t  could a f f e c t  
punch en t ry  and diaphragm tear ing .  
t h a t  resu l ted  i n  the use of t h e  p a r t i c u l a r  four-sided shape i l l u s t r a t e d  i n  
f igure  6(a)  showed t h e  following: I n  t h e  i n i t i a l  shakedown t e s t i n g  of t h e  
f a c i l i t y ,  a conical shape had been t r i e d  f irst  without success. Even with 
d i f f e r e n t  cone angles, t h e  punch general ly  pierced without inducing lobing. 
A pyramid shaped punch with f l a t  s ides  and with a s l i g h t l y  f l a t t e n e d  t i p  w a s  
t r i e d ,  which apparently produced successful diaphragm openings i n t o  both 
three-  and four-lobed f l a r e s .  A t  t h i s  time i n  the  development of t h e  f a c i l i t y  
many other problems were l imi t ing  operation. A s  a r e s u l t ,  f u r t h e r  punch 
development w a s  deferred. 
t h e  consis tent  attainment of smooth combustion i n  t h e  dr iver  tha t  it became 
increasingly evident that  t h e  pierce shape w a s  a contributing f a c t o r  t o  t h e  
type of lobe formation. 

Con- 

A review of t h e  e a r l y  developmental work 

It w a s  not u n t i l  t h e  refinements of t h e  PAS and 

To evaluate t h e  opening formed by a pierce head, severa l  f lat-sided 
punches were f i r e d  i n t o  diaphragms. Typical r e s u l t s  are shown i n  f i g u r e  7. 
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Although a square hole w a s  formed i n  each case, as shown i n  f igure  7(b),  a 
careful  examination of t h e  corners of t h e  holes indicated t h a t  many did not 
show a crack emanating from the  corner i n t o  t h e  metal. Thus, there  probably 
w a s  not an adequate crack or notch i n  each corner t o  induce the  s t r e s s  con- 
centrat ion believed necessary t o  s ta r t  a tear along each of the  hoped-for 
paths (i .e. ,  four  mutually perpendicular paths rad ia t ing  from t h e  corners of 
t h e  p ie rce) .  
i n t o  one corner (lower r i g h t  i n  f i g u r e )  is  almost p a r a l l e l  t o  t h e  plane of the  
metal r a t h e r  than perpendicular t o  t h e  metal. 

I n  f a c t ,  as can be noted i n  f i g u r e  7(a) ,  t h e  ax is  of t h e  t e a r  

I n  an e f f o r t  t o  improve the  piercing charac te r i s t ics ,  the punch shape w a s  
notched; t h a t  is, m e t a l  w a s  removed between adjacent edges as shown i n  
f igure  6(b)  t o  obtain a b e t t e r  cu t t ing  ac t ion  i n  each corner of the  opening. 
Several  diaphragm openings were made with the  notched-surface piercing heads. 
Although s a t i s f a c t o r y  lobes were formed i n  a l l  cases, the  r a t i o  of three-lobe 
t o  four-lobe openings w a s  about even. The hole formed i n  the  diaphragm w a s  
e s s e n t i a l l y  t h e  same as t h a t  noted f o r  t h e  f l a t  surface punch as shown i n  
f igure  7. 

To increase t h e  cu t t ing  ac t ion  a t  pierce,  a punch shape w a s  designed with 
hollow ground surfaces and with th in ,  concave edges, as i l l u s t r a t e d  i n  
f igure  6 ( c ) .  
compared t o  t h e  s t ra ight-s ided u n i t s .  
phragm obtained with a concave-surface piercing head. 
i s  formed i n  which the  thickness of t h e  uncut metal along a notch i s  tapered 
from t h a t  of the  parent metal (0.1 i n . ) ,  a t  the  edge away from t h e  hole, t o  a 
paper-like thickness as the  notch fairs i n t o  the  pierced hole. T h i s  arrange- 
ment provides f o r  the  formation of local ized high-stress concentrations t o  
induce four  well-formed t e a r  paths. 

Also, the  t i p  of the pierce head had a smaller en t ry  angle, as 
Figure 8 shows the  pierce i n  a dia- 

A d i s t i n c t  vee-notch 

The diaphragm openings obtained with a concave-surface pierce head and 
the PAS have a l l  been sa t i s fac tory .  This shape i s  i n  d a i l y  use i n  the 
f a c i l i t y  and i n  73 f i r i n g s ,  71 openings were i n t o  four-lobe types s i m i l a r  t o  
t h a t  noted i n  f igure  2 ( a ) .  The other two openings were i n t o  three-lobe types 
( f i g .  2 ( c ) ) .  I n  a l l  cases, the diaphragm weight measured before and a f t e r  
each t e s t  indicated no l o s s  i n  material .  

NOZZLE CLOSING MECHANISM 

A quick closing mechanical nozzle valve has been designed, constructed, 
and employed i n  conjunction with the  PAS. 
a r i s e s  f r o m t h e  f a c t  t h a t  a large volume of hot, high-pressure dr iver  gas 
remains i n  the  dr iver  and driven chambers a t  the  completion of the  t e s t  
period. Since t h e i r  combined volume i s  about 110 cu f t ,  the  remaining gas 
(at  about 4000 p s i  and 2000° R )  would continue t o  flow through t h e  nozzle 
and t e s t  sect ion f o r  several  minutes. Thin-skinned models would be heated 
above the melting point,and fast-response pressure o r  force transducers 
mounted there in  would be l o s t .  Since t h e  models and instruments a r e  used f o r  
f u r t h e r  t e s t s ,  it i s  necessary t h a t  they be exposed t o  t h e  hypersonic t e s t  
gas f o r  only t h e  minimum time required f o r  a spec i f ic  experiment. 

One necessi ty  f o r  t h i s  device 
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The assembly and d e t a i l s  of the  squib-operated nozzle closing mechanism 
a r e  shown i n  f igure  9. The valve w a s  designed as p a r t  of t h e  nozzle housing. 
A rectangular piece of copper i s  guided by a s l o t  i n  t h e  re ta in ing  block and 
has an open posi t ion and a closed posit ion.  
through t h e  copper block i s  concentric with t h e  opening i n  t h e  sect ion of the 
upstream portion of t h e  nozzle o r i f i c e .  I n  the  closed posit ion,  t h e  passage- 
way i s  blocked by t h e  s o l i d  portion of t h e  block. The weight of t h e  moving 
par t s ,  as shown i n  t h e  right-hand s ide  of f igure  9, t o t a l s  about 4 pounds. 
The mechanism is  actuated by two explosive squibs which pressurize t h e  
cylinder chamber t o  approximately 6000 p s i ,  
t h e  time from the  i n s t a n t  t h e  s igna l  i s  sent t o  the  primer c i r c u i t  u n t i l  t h e  
pressure starts t o  r i s e  i n  t h e  cylinder i s  about 10 t o  15 msec. During t h i s  
period t h e  p is ton  does not move. 
p i s ton  starts i n  motion and t r a v e l s  i t s  f u l l  distance (1-3/8 i n . )  i n  l e s s  than 
2 msec. 

I n  t h e  open posit ion,  the  hole 

Measurements have shown t h a t  

Coincident with t h e  pressure r i s e ,  t h e  

CONCLUDING REMARKS 

The present paper has summarized the  recent experience with diaphragm 
operation i n  the Ames 1-foot shock tunnel. The modification of several  
components of the  diaphragm piercing system has resu l ted  i n  a subs tan t ia l  
improvement i n  the r e p e a t a b i l i t y  of the  primary shock-wave ve loc i ty  and has 
v i r t u a l l y  eliminated diaphragm lobe f a i l u r e .  It has been demonstrated t h a t  
a pierce analog system can be used t o  open a diaphragm at the  optimum time, 
regardless of t h e  length of a normal combustion process i n  t h e  dr iver  section. 

The pierce control  c i r c u i t  a l s o  serves t o  in tegra te  t h e  operation of a 
nozzle closing valve i n t o  t h e  operating cycle of the f a c i l i t y ,  such t h a t  t e s t  
models a r e  protected from damage i n  t h e  event of an abnormal functioning of 
t h e  combustion-heated dr iver .  I f  the  pierce head i s  properly designed, the  
diaphragm can be cons is ten t ly  opened i n t o  a four-lobed configuration with no 
l o s s  of material .  

Ames Research Center 
National Aeronautics and Space Administration 

Moffett Field,  Calif  ., Jan. 7, 1965 
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THROTTLING PLATES \ (7/8- INCH DIA HOLES) 

COMBUSTION CHAMBER 

I A P H R AGM 

SQUIB -AND/ 
PISTON HOUSING 

/ -SUPPORT PLATES 
(I-INCH DIA HOLES) 

(a )  Schematic d e t a i l  of punch, t h r o t t l i n g  plates, and diaphragm. 

A-31629.1 

(b)  Shape of diaphragm before rupture.  

Figure 1.- Arrangement of driver-driven diaphragm sect ion of t h e  Ames 1-Foot 
Shock Tunnel. 
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(a) Four-lobe, normal, even, (a) Three-lobe, small fold. 

(b) Four-lobe, uneven. 

c . .,- . 

(e) Three-lobe, normal. 
Figure 2.- Lobe formation of 

diaphragm openings considered 
to be satisfactory. 

J rl_ - .  

(b) Three-lobe, fold and tear. 

A-32510 

(e) Three-lobe, lost metal. 

Figure 3.- Lobe formation of 
diaphragm openings considered 
to be unsatisfactory. 
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PIERCE WITH P A S  

PIERCE BEFORE PAS I 
WAS INSTALLED 

(F IXED TIME / 
I I I 

200 400 600 800 
TIME FROM INITIATION OF COMBUSTION, msec 

Figure 4.- Representative records of t h e  f a s t e s t  and slowest pressure-time 
var ia t ions ind ica t ive  of normal combustion i n  t h e  dr iver  of t h e  Ames 
1-Foot Shock Tunnel. 
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Figure 5.- Block diagram of Pierce Analog System (PAS). 
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A-33551 

Figure 6.- Piercing-head punch shapes: (a) left - flat surface; (b) center - 
notched surface; (c) right - concave surface. 



(a) Outer side. A-31634 

(b) Inner side. A-32779 

Figure 7.- Typica l  pierce formed by four-sided flat-surface punch (without 
pressure in combustion chamber). 
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A-3 2171  (a) Outer side. 

A-3 2178 (b) Inner side. 

Figure 8. - Typical pierce formed by four-sided concave-surface punch (without 
pressure in combustion chamber). 
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A-33552.1 
Figure 9.- Squib actuated nozzle closing mechanism. 
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